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Abstract: The problem is to calculate an approximate solution of an initial value
problem for an autonomous system of N ordinary differential equations. Using fast =power series techniques, we exhibit an algorithm for the pth..order Taylor series
method requiring only o(pN In p) arithmetic operations pe~ step as p -, +~~~. (Moreover,
we show that any such algorithm requires at least O(p~’) operations per step.) We
compute the order which minimizes the complexity bounds for Taylor series and linear
Runge-Kutta methods, and show that in alt cases this optimal order increases as the
error criterion s decreases, tending to infinity as s tends to ‘ero. Finally, we show
that if certain derivatives are easy to evaluate, then Taylor series methods are
asymptotically better than linear Runge-Kutta methods for problems of small
dimension N.
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1. Introduction

Let 2) be a set of points in the real N-dimensional linear space 1~N, and l.t ‘0
be a set of operators on RN, such that the initial valUe ~roblem of finding a function

x : 10, 13 -‘ RN satisfying

*(t) — v(x(t)) If 0 < t < 1
(1.1)

x(O) —

has a unique solution for every (x0 , v) ( ~Jx~~; we assume that x is analytic on (0, 1].

Th. autonomous form of this system is no restriction, since any non-autonomous

system may be made autonomous by increasing the dimension of the system by one.

In Werschulz (76), we looked ~t the computational complexity of using one-steo

methods to generate an approximate solution to (1.1) on en eQuidistant g~
j
~ 

in the

sense of Stetter (73]; that is, the methods considered computed approximations x1 to

x(ih) by the recursion

(1.2) x,,.1 — x, +h p(x1 1 h) (0~~i �n- I ,n — h ’), —

where h n ’ is the step-size of a grid with n points, and ~ is the increment function

(Henrici (62]) for the method. (To be brief, we will refer to “the method p?’) In that

paper, we discussed the problem of optimal order and minimal complexity for rather

general classes of one-step methods,

In this paper, we will use the techniques arid results of Werschulz (76] to

analyze the complexity of using Taylor series methods and linear Rurige-Kutta methods

• to generate approximate solutions whose error does not exceed a. Th. model of 
_____

computation, error measure, and complexity measure to be used are d.scrlb.d In

Section 2, as well as the relevant results from Werschulz (76]. •,
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We dIscuss the complexit y of Taylor series methods in Section 3. UsIng th. fast

power series techniques of Brent and Kurig (76], we show that 0(~N I~ p) arithmetic

operations suff ice to comput. the pth..~ der Taylor series approximationi mor.ovar, we

show that 0(~N) operations are necessary. In Section 4, we discuss the complexity of

linear Runge-Kutta methods. In both Sections, we compute lower and upper bounds on

the complexity using a fixed method of given order; these results are then used to

compute optimal orders which minimize these complexity bounds. We show that in all

cases, the optimal order increases as • decreases, tending to Infinity as a t.nds to

zero.

Finally, we compare these two classes of methods in Section 5, whsr• we show

that if th. partial derivatives of v are easy to evaluate, then Taylor series methods are

asymptotically better (as • tends to zero) than linear Runge-Kutta methods for

problems of small dimension N.
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2. Preliminary Results

Before proceeding any further, we wW establish some notational conventions .

• Let 1C be an ordered ring; then E4 and E~’~’ respectively denote th. nonnegative and

- 
‘ positive elements of ~~~~. 

(This is used in the cases — P the real numbers, and -
•

— 1, the Integers.) The symbol “:—“ means “is defined to be,” while “a” means ‘ta -

identically equal to.” We use “I” to d note th. unit int.rval (0, 1]. The symbo l “V.’ a

- used to denote the, gradient of a mapping. Th. notations “x .L a” and “x 1 a” are used

• to indicat • one-sided limits , as in Buck [65]. FInally , we write “ (a.b)c” to Indicate the I -

- - ~th part of equation (a.b), as In Gurtin (75].

We next describe the model of computation to be used. We assume only that all

arithmetic operations are performed exactly in P (i.e., Infinite-precIsion arithmetic) and

that for any algorithm to be considered for the solution of (1.1), a ..t of procedures Is

given for the computation of any information about v required by that algorithm. (For

- - instance, with Runge-Kutta methods, we must be able to compute v at any point in its

domain.)

In addition, we must pick sri error measure, so that we may measure the

discrepancy between the approximate solution produced by ~ (via (1.2)) and the tru

solution. For the sake of definiteness, we use the &obal error

(2.!) V~(~,h) :— max Q�i�n Ih~(iI,) 
-

where ~
j •  fi Is a norm on RN . Other error measures may be used, such as the f~ gI

error ~~r gj~~ ~ 
and the ~~~ error p.g~. lnjj ~1~a ‘w (see Henrlci (62] and

• St.tt.r [73] for definitlons) this would Involve only a slight modification of the results

contained in the sequel.
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We finally describe the complexity measure to be used. Let s — (~ : p E Z~1

be a basic sequence in the sense of Werschulz (76]; that is, there exist functions

P +x1.+P+ afld KL , X U : R + .4 p+ such that

(2.2) aG(,P.h) — st(p,h) hP for h E I and p E

where 
- 

-

(2.3) 0 c p1(p) ~ R(p,h) � ~Jp) < +~~ for Ii ( I

We say that has order p. This is a slight extension of the definition of order given

in Cooper and Verrier [72]; the function L introduced here is necessary and sufficient

f or the “order” of a method to be unique. (For the sake of exposition, we assume that

• ML and are analytic on P4 , and that lim 
~~~~~ ~L~

P
~
11

~ 
and lim 

~~ 
s~jp)1/P exist and

are positive real numbers; this wilt always be the case in the examples we consider.)

Then we will 
~
j  interested in the total number 2j arithmetic operations C(p,a) reauired

• 

• 

12 guarantee that
(2.4) VG(cpIh) 

~ e :— e~
for a given p ~~ ~ given a. (Here e is the base of the natural logarithms.) We

suppose that 0 < s < 1, so that a is positive. Clearly, a increases as a decreases, and a

tends to infinity as a tends to zero.

In the methods we consider, we may write

(2.5) - C(p,a) — n c(p)

where n is the minimal number of steps required arid the ç~ j  p~ ~~~ c(p) is the

number of arithmetic operations required for the method of order p. As in Traub and 
. 

-

Wo~niakowskI [76], we shall express the cost per step associated with in the form

(2~6) c(p) :— e(9~ (v)) + d(p) .

Here S~p(V) is th. information about v required to perform one step of q~, and we

—•- -~~~~~ -—~~~~~~~~~~~~ - —~~~~~~~~
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write e(~~ (v)) for the intprmptipnal ç~
jj, of ~~ we call d(p) the comblnatorv cQIt

ofc~.

Note that we explicitly Indicate the dependence of on v, so that w• may

compare the cost of (say) an evaluation of v with a sca ler arithmetic op.ratIon.

Basically, e(5~ (v)) measures the cost of getting new data about v required by p~,

while d(p) measures the cost of combining this new data to get an approximate value

• 
of the solution at a new point. For example, Euler’s method in

xi+~ — x1 +hv (x ,)

• has informational cost ~
N, e(v1), where v1 , .. . , v~ are the components of s arid for

any function ~ pN -, P. we define

(2.7) e(..) :~ cost of evaluating ~ at one point

The combinat~ry cost is 2t~ arithmetic operations, i.e., one scaler multiplication and one

sca lar addition for each of the N components.

We must now face a problem that occurs in almost all areas of complexity

• 

- 
theory. The number of operations c(p) required for one step of a pth..a,~rder method is

usual ly unknown p~~ ~~ we only have bounds of the form

(2.8) CL(p) ~ c(p)~ c1,/p) .

That Is, cL(p) is a lower bound on the number of operations required per step, usually

derived via theoretical considerations, and c~(p) is an upper bound on the number of

operations required per step, which is derived by exhibiting an algorithm ior

computing the pth_~~ ep. method. (In what follows , we shall assume that the functions

cL , CU: P + 
~ P

4 are analytic , althou gh this requirement may be greatly w•ak.r ied.

However, this assumption holds for all examples that we consider.)

From the discussion in Section 3 of Werschulz (76], we find that the st.p-slze h

must satisfy

— - — -~~ — A
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(2.9) h1j(p,a) ~ h

where

(2.10) P~(p,a) :— ,q,,(p) hIP 5-a/p and h1j(p,s) :— au(p) ’h/P s C/P

Using (2.5), (2.8), (2.9), and (2.10), we may find bounds on the complexity C(pa).

Theorem ~j~: Define

Ci(p,a) :— f1(p) eCIP , where f1(p) :— 51(p) l/P CL(p) ,

and

C1Jp~a) :— f~ (p) es/P , where f~(p) :— rnjp) l/P ctJ(p) .

Then

(2.11) C1(p,a) ~ C(p,a) ~ C~(p.a)

Proof: See Theorem 3.1 of Werschulz (76]. I
Thus we have bounds on the complexity of using p~ to compute an approximate

solution satisfying (2.4). We now wish to consider the problem of optimatity. Define

(2.12) C’(a) : inf {C(p,.): ç~ 
( •)

We are interested in bounds for C5(a) under reasonable assumptions about f1 arid f
~j

We first suppose that

(2.13) 
~~~ 

> 0 and 
~~~~~~~~ 

0 if p > 0

and

(2.14) lim pt~ 
f1(p) — lim +00

Assumption (2.13) is that there is no method whose cost per step is zsro, while (2.14)

essentially means that the “better” a method is (i.e., the higher its order is), the more -•

we should expict to pay for its use.

Using the techniques of elementary calculus, we find that a necessary condition
-1 •

for p to minimize C1( ,a) Is that

(2.15) C — GL(p) :— P2 f1’(p) / ~L~P~
; 

~~-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --•-- -~~~~ - ~——m



f’~~~TTIIIT T~~~~~TT~~~ T ~~~~

_ _ . _

~~~~

similarly, Clj( ‘ ,e) takes its minimum at p only If

(2.16) a — G1jp) :— ‘
2 
~u’~P~ / 

f~(p)

Sufficient conditions for the existence and uniqueness of solutions to ~2.15) and (2.16)

(I..., for well-defined functional inverses of G1 and G~
) which actually minimize C1,,,( , )

arid CLJ( ,a) are given in

Lemma Li: Let 
~L and 

~ 
be as above, and suppose that

(2.17) GL’(p) > 0 If GL(p) > 0 and G~’(p) > 0 if G~j(p) > 0

Then 
~L and G~ 

have respective functional inverses 
~L

5 P~ 
: P’ 4 R4 such that

for al l pE P’’ -

(2.18) C1
5(a) :— C1(p~

t(a),e) ~ Cj (p,a)

and

2 (2.19) C~
t(a) :— Cu(put(a),a) ~ C~

(p,a)

with equality in (2.18) or (2.19) if and only if ~ — pL
t(a) or p — put(a), respectively.

Proof: See Theorem 2.1 and Lemma 3.1 of Werschulz (76]. I
We call 

~~~~ 
(respectively, pUt(a)) the lower (u~~er) optimal order. CL (e)

(respectively, C~
t(a)) the lower (upper) optimal complexity, arid

(2.20) hLt(a) :— hL(pL (a),a) (respectively, h~
t(a) :— hijput(a),a))

the lower (uooer) optimal steo-size. Combining (2.11), (2.12), and Lemma 2.1, we have

Theorem ~~:

CL
5(a) ~ C5(a) 

~ C~
t(a). I

We next describe the behavior of these quantities as a Increases and tends to

• Infinity.

]~~Q!’j~ ~~: ~~ ~L and 
~ 

be as in Lemma 2.1. Then 
~~~~ Put~’~ 

C1(a), and

C~
t(m) all increase monotonically and tend to infinity with .~

Proof: See Theorems 2.2 and 3.3 of Wsrschulz (76]. I

-— 
_____ ________ J
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• Finally , we need a restriction of the problem class ~ x’~ to “sufficiently difficult”

prob lems; this will allow us to determine 5L and thus establish lower bounds. We will

assume that

(2.23) vG(
~p,h) ~ (P4 h)P if h I and p ( ~~~~

for some 14 > 0 Independent of Ii and p. In the methods we study, (2.23) holds

provided all sharp upper bounds are attained.

~~~~ -~~~~~~~~~ - - - - ~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~-—~~-- • - - - -  -~~~~-~~-
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3. Taylor Series Methods 
-

The class •~~ 
of ravior series methods is defined by expanding x in a truncated

~
• 

. Taylor series. Thus the increment function is given by

(3.1) .~
(x

~.
h) :— ~~~ v~ kx~ h

k / (k+1$,

where

(3.2) v°’~(xi) :— (d/dt)1’ (v(x(t))] x(t) —

The usual method of computing (3.2), as described in “classical” numerical analysis

texts such as Henrici (62], invokes th. chain rule. This quickly leads to expressions of

horrifying complexity; for this reason, most texts quickly abandon the discussion of

high-order Taylor series methods.

We are interested in faster algorithms to, computing p
~
. First, we address the

problem of a lower bound for the comblnatory cost d(p).

• Proposition ~j : There exists a constant a1 > 0 such that any sequence of

algorithms for computing 
~T must satisfy

(3.3) d(p) 
~ 

5
~ 

pN

Proof: Any algorithm for computing 
~~ 

requires the information

9~ (v) :— {D~v: 0 ~ ~ 
p - 1) .

(We use the standard multi-index notation found in Friedman [69].) It is then easy to

see that the above set has 0(~N) (as p t ~
) distinct elements, which are (generally)

Independent; this is an immediate consequence of Problem ii in Chapter 1 of P6lya end

Szeg5 (253. Thus (3.3) gives a linear lower bound. I
Note that the constant in (3.3) depends on N. Since we are treating the case

where N is fixed arid p is allowed to vary, we wilt not indicate this dependence

explicitly. We now see how close we can get to an optimum value for d(p). 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ •
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- Theorem ~j : There exists a constant aU > 0 such that the combinatory cost

- d(p) of computing 
~r’ ~ ~T satisfies the bound

(3.4) d(p) � a
~ 

p~ In (p+e)

Proof: We first consider the case N — 1. Note that x(h) is the zero of

1 (3.5) F(z) :— JZ dE / v(~
) - h.

H x0
As in Brent and Kung (76], we consider the formal power series

P(s) :— F(x0+s) — F(x0),

where s is an indeterminate. Let V be the power series reversion of P. Adopting the

notation of Brent and Kung (76], we see that

x(s) — x0 + V(s) — x0 + Vp(s) 4

• 

S 
By the uniqueness of the Taylor coefficients of an analytic function, we see that

i~ ~~(x0,h) — h~~V~(h) .

I Since the number V (h) can be computed in O(p In p) operations from the Taylor

- 
coefficients of v (by Theorem 6.2 of Brent and Kung (76]), the result for N — 1 follows.

- For N � 2, we use Newton’s method (RaIl (69]) applied to the formal power

series operator P given by

(PyXs) :— y(s) - x0 - $~ 
v(y(r)) dr ; 

-

clearly, the formal power series x(s) is the zero of P. The algorithm itself is defined

recursively. Let a formal power series x(~)(s) satisfying

X(
~

)(s) — x(s) + 0(sP+l)

be given. Precompute

(3.6) w(s) :— $~ 
v(x(~)(r)) di - x~ - x(~ )(s) + CXs2~~

2),

21 
- 

(3.7) Q(s) :— Vv(x(~)(s)) + o(s2~~2),
I and let u(0)(s) :— 0. Then set

— X(p)(S) + u(~+1)(s) 1 I
E - 

—

- • -—~~~~~~~~~~~~~a~~~ ~~~~~~———— . - . 
•~~~~~~~~~~~—
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where

(3.8) U(k+1)(S) :— 5~ 
Q(r) U(k)(i’) di + w(s) + f.Xs2~~

2), 0 ~ k~ p

Following the proof given In RaIl (69], we find that

x(2~+1)(s) — x(s) + 0(52p+2)

We need only consider the cost T(p,N) of computing the series X(p)($) In

determining d(p), since x(h) may be recovered from the formal power series In 0(p)

operations. Clearly, we have the recursion

(3.9) T(2p+1,N) S T(p,N) + T6 + T7 + T8,

where Tm Is the cost of step (3 m) f or m 6, 7, 8. Let COMP(pN) be the time required

to find the first p terms of the formal power series f(y1(s), ... , y~g(s)), where f , y~, —

~
N are formal power series, and y

~
, ..• , Y~j have zero constant term. Theorem 7.1 of

Brent arid Kung (76] states that

COMP(p,2) — 0(p2 In p)

- ; and it is easy to show that for any N Z~~,

- I ~0MP(p,N+1) — 0(p cOMP(p,N))

Thus for N ~ 2, we have

(3.10) COMP(p,N) — 0(~N In p),

and so we see that
— T6 + T7 — Q((2~+1)N In p).

Finally, let MUIT(p) be as in Brent arid Kung (76k we see that

T8 — (psi) (N2 MULT(2p+1) + 0(p)) — 0((2p+1)2 In p)

if Fast Fourier Transform multiplication (Borodin and Munro (75]) is used. Since N ~ 2,

we have

(3.11) T6 + T 7 + T 8 — 0((2~+i)N~~p),

and so (3.9) and (3.11) Imply that

S 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ i— .—— —5— —--5-.—
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T(p,N) — 0(~N In p),

1 which completes the proof. 
•

- 
(Note that the second algorithm Is Inferior to the first algorithm when applied to

the scalar case N — 1, where we find that the second algorithm requires 0(p2 In p)

-

5

, arithmetic operations.)
• - We now determine bounds on C(p,a). First, consider lower bounds. Clearly,

there exists eL(v) ~ 0 such that

(3.12) e(0flv~
) � e1(v) (1 ~ i �n, IflI 7~)

Since 9Z~
(v) has 0(~N) elements, there exists a constant bL > 0 such that

(3.13) e(~?~(v)) � bL e1(v) ~N

From (3.3) and (3.13), we have a lower-bound cost per step of
- 

~
- (3.14) c1(p) — (aL + bL eL(v)] ~N

This leads to

Theorem ~~: C1(p,a) — ML (aL + b1 eL(v)] ~N ea/P

Proof: This is an immediate consequence of (2.23) and (3.14). I
Note that f1(p) :— 14c1(p) satisfies the conditions of Lemma 2.1. Thus, the

optimality theory of Section 2 holds. In particular, we have

Theorem ~~: CL
t(a) — M1 (aL + bL e1(v)] (e/N)N ~N

Proof: From (2.18) and (3.14), we find that G1(p) — Np, so that

p1(a) — a/N and h1
5(a) — (M1.N) t -

The result follows by letting p — PL5
~’~ 

in the definition of C~(p,.). I

However, recall that we assumed that the non-identical mixed partial derivatives

- 

• of v are independent. There are a number of systems for which this Is not true (for

instance, constant coefficient linear systems) for such systems, It Is clear that we may

- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~ - - -.~~~~~~~~~~~~~ ---.~~ : 5 — -  _-_ -~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ —--- - -5. --~~.~~. •—~ --- -- - - 5 - ~~~~~~~~~~ ~
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be able to use the extra information of non-independence to find algorithms that are

faster than the tower bounds given above. However, we will Ignore this case and only

consider the problem for a “general” function v.

Next, we turn to upper bounds on the complexity. Theorem 3.1 tells us how to

combine the necessary information to get the solution at a new grid-point; we need

only measure the cost of getting the information. So, let

e~’~(v) — max (e(D~v~): 1 Si  S N, I$J — Ii)
Using the result in PôIya and Szeg5 (25], we see that -•

(3.15) e(W p(v)) s N ~~~ .~~(v) (N+k- 1)! / (kKN-1 )!]

Unfortunately, the right-hand side of (3.15) does not fit our general model, so we must

assume that we know how e0
~(v) changes as Ic increases. ~~ ~jft consider t~ cuD

4. where 
~~ cost Q.t derivative evaluation ~j  bounded; j !~ j  j~ ~~ ~ff assume that

(3.16) e(k)(v) ~ e1j(v)

- ~
- t~r~ some eU(v) independent ~j k. Other cases (e.g., e~~v — 0(1~m) for some m > 0)

may be analyzed in a similar manner; of course, they will give different results. By

(3.15) and (3.16), there is a b~ > 0 such that

(3.17) e(~2~(v)) S b~j e1jv)pN.
-

~ 
From (3.4) and (3.17), we have an upper-bound cost per step of

(3.18) C~(p) — ~~ In (pse) + bU ~1j(y)pN .

This leads to

Theorem ~~: There exists an MU > 0 such that

C~j(p,a) — MU (CU ~N 
~ (ps,) + b~ ~~~~~~ ~U/P

• 

S Proof: By Cauchy’s Integral Theorem (Ahlfors (66], pg. 122), there exists a -

9>-0.uch that

OIx~”~ ltI I (k+1)l ~ B1’ , - 5 

£- S ~~~~~~ : -— ——
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-1 
• (3.19) IIIvIII :— max 

~ ~ ~ 
lJy(t)II

for any y: I ~ pN Thus by Section 3.3-3 of Henrlci [62], we see that a Upschit*

I constant for in $
~ 

is given by

Z~~J IIIx~’~’~III h~’ / (k+lfl S ~~~ (Bh)1’ s I :— (1 — 
~~i~~~r

1 ,

provided that h ~ h0 < s’1~ By Section 3.3-2 and 3.3-4 of Henrici [62], there exists ~fl

M.~>0such thst

S (Mi,j h)~ .

The result now follows from Theorem 4.1 and (3.18). I
We are now ready to consider the optimal p for Cij(p,e).

-: Theorem %~:

(1.) For all a> 0, there exists Pu5
~~ 

such that (2.19) hOlds.

(2.) Pu5
~~ 

increases monotonically with a, and

~ a/N as a t Co .

(3.) C~j
5(a) increases monotonically with a, and

I C~*(.)~~M~j a~ (e/N)N aN ln. a s a t c o .

(4.) h~*(.) w (Mij e~i
4 a sat -co .

Proof; Clearly CU satisfies (2.13) and (2.14). Now write

G~
(p) — Gi(p) + G2(p) ,

where

; G1(p) — N p and 
~~~ 

Pp 2/02(p) ;

here we set

02(p) :— (pse) ((pie) In (pee) + 1] and r :— au I (b~ 
e1jvfl

We see Immediately that G1 satisfies (2.17); a straightfo rward calculation shows that

-
~~~ G2’(p) — p (D(p)T~ (.p (In (pee)] — 1] + 2efr in (pee) + 1]) ,

—~ --__—5----
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so that G2’(p) > 0 for p > 0. Thus G2 satisfies (2.17), whIch shows that Gij satisfies

(2.17). Hence 
~U

5 and C~’ 
behave as described In Theorem 2.2.

Since PU~
1
~ 

goes to infinity with a, we see that

~ 
‘ G~Jp1j’(a)) ~~

‘ N + pu (,) / In pu (1) N Pu5
~’~’

which gives the asymptotic estimate in (2.). The rest of the Tht rem follows from this

estimate. I
Unfortunately, th. estimates given above are only asymptotic as a t ~ this will

be typical, since many of the equations to be solved involve products of logarithmic

and polynomial terms, and thus cannot be solved exactly. On the other hand, these

asymptotic expressions are sufficient for our purposes, since they describe how

quickly 
~~~~~~~~~~ 

and C~
5(,) increase with a~

Note that as a tends to infinity, C~
5(•) becomes independent of e11(v), which

measures how hard it is to evaluate the derivatives of v; this is because the
I

combinatory cost eventually overwhelms the informational cost. This kind of behavior

will be typical of the complexity analyses in this paper. Finally, note that the bound

(3.20) CL*(a) — 0(Jg) S C5(a) ~ 0(~N In a) — Cu5(a) as a t Co

implies that

C~~
(
~
) I C~”(a) — O(In a) as a t Go;

this indicates the gap in our knowledge of the complexity of solving (1.1) via Taylor

series methods.

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — - -5—~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ---~~ —--—~~~~--~~~~~~ -~~~~ -5 
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4. Linear Runge-Kutta Methods

For many funct ions v, cacu lation of the derivatives required by Taylor series

- ;  methods Is prohibitively expensive. For this reason, we are Interested in methods

which use information that is somewhat more readily available. In particular, we will

consider methods that use only evaluations of v, combined In a highly structured

manner. We say that is a class of linear Runae-Kutta methods (abbrevi ated “LRK

methods”) If each increment function 
~l) 

may be written In the form

(4.1) ~~(x1,h) :— Z~~ ~~ 1’~
where

(4.2) k~ :— v(x1 + h Z~~, 
)9j k~) for 0 S I S $ - 1 -

the integer s — s(p) is said to be the number of stages of the number of stages Is

equal to the number of times the vector function v must be evaluated. (In order to

simplify notation, we will not explicitly indicate the dependence of and II~ on p..) The

method defined by (4.1) and (4.2) is explicit in that k~ depends only on Ic~ . ... ,iIl~1l

see Butcher (64] for a discussion of semi-exolicit and implicit methods. (We. use the

adjective “linear” to distinguish these methods from “nonlinear Runge-Kutta m thods,”

-: which were first proposed in Brent (74].)

Since the function p~ is (in practice) always evaluated by using the obvious

algorithm suggested by its definition, we shall identify an algorithm for evaluati ng p~
with itself. Thus the problem of finding the best algorithm for evaluating p

~ 
in . -

is equivalent to the problem of finding the best basic sequence of LRK methods

possible. This Is related to the problem of finding the smallest val ue of s(p) such that

ha. order p. This minimal value I. given by

- —— - ~~~~~~~~~~~ - - -
5- -~~~~~~~~ - -- ,5__ - - 5- -~~-—-~~-~~. —-—-5
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p.1,2,3,4

j pc i  p — 5 ,6
- 

- (4.3) s(p) —

) p + 2  p — 7

L unkfbwn p~~8

- 
. FOr methods of order greater than seven, a gap develops. For instance, eighth-order

methods with eleven stages exist, and it is known that any eighth-order method

requires at least ten stages . For arbitrary p ~ 8, the best bounds known for the

optimum value of s(p) are

(4.4) p + ~(p) s s(p) ~ (p2 - 7p • 14) / 2

— 
where #(p) ~ c In p for all sufficiently large p (for some c > 0). The lower bound I. - -

given In Butcher (751 th, proof is quite involved, and the result is not much better

than the “trivial” ow., bound s(p) � p (Hlndm.rsh (74], page 84). A class ~~~~~~~~~ of

methods such that Pp requires only (p2 - lp • 14) / 2 stages Is given in Cooper and

Verne, (72]

We f irst consider lower bounds on the complexity C(p.) using IRK methods.

The “trivial” lower bound s(p) ,,wiIl be uasd, since the term ~(p) will be small when

p is small and wIN not affect the asymptotic behavior of optimal order and complexity

for p large. ft Is known (Butcher [$4]) that at least 0(p2) of the subdiagonal elements

of the mat ’hi A (who.. •Iments are the in (4.2)) must be non-zero in order for A —

to define a pth~ord,r method. Thus there esists a1 ‘0 such that

(4.5) d(p) 
~ ~LP 2

since s(p) 
~ p We see that

(4.6) .(~~ (v)) ~ Ne1(v) p ,

where we now write

e1(v) :— mm i~i~ii 
e(v1)

- 
— -~~~~ 

~1l•t_ - - - ~~~~~~ 5- 5- .. -5 •-5 -5~~~~~ S~~~~ L~~~ ~~~aa s~~~~~~~ ~~~~~ — -~~~~~~~~~~~~~~ 

-
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Thus (4.5) and (4.6) show that a lower bound on the cost per step for is given by

(4.7) c1(p) — a1 p2 + N e1(v) p

Theorem 4J~:

C1(pa) — M~ (ii. p
2 + N 

~~~ 
P3 es/P

Proof: This follows immediately from (2.23) and (4.7). •
It Is clear that f1(p) :. M1,~ (a1 p2 + N .1(v) p3 e ’~ satisfies (2.13) and (2.14).

We claim that f1 yields a G11~ satisfying (2.17). Indeed, write

— f 1(p) f2(p) , 
-

where

f1(p) :— M1a1p

and

f2(p) :— p +, , where ~ :— N eL(v ) / a1

Clearly f
~ 

yields a G1 satisfying (2.17). Since f2 is a linear polynomial with a negative

zero, it may be shown that f2 yields a 
~2 satisfying (2.17). Thus f1 yields a

satisfying (2.llh in fact, we have

(4.8) 
- 

G1(p) — G1(p) + G2(p) — p (1 + (1 + .p~
1)
~
1] .

This leads us to

Theorem ~~:

C1(.i) (“k ~L ,2 / 4] 2 as e 1

Proof: From (4.8), we see that G1(p) ‘~ 2 p as p t ~~~. SInce (2.13), (2.14), and

(2.17) hold, PL°(~ 
tends to infinity with .. Thus

a — G1(p15(.)) ~ 2 PL
5
~~ ~ ‘~~ ~~~~~~

I.e., Pi
5
~~ 

./2 as a 1 ~~~. Th. result now follows from Theorem 4.1. •

We now turn to upper bounds on complexity. The class •~~
p
~ 

derived In

~

5- ~~~~~~~~~~~~ ~~~~~~~~~~~ ~~ - — -—  
~~
-
~~~~~--~~~~~~~ — - - -

, 
- -
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Cooper and Verner (72) has two deficiencies, the first of which is that no uniform

-
~ upper bound on CLLJ(Pp,h) is known for 

~cvl~iø in addition, the combinatory cost for

this class of methods is 0(p4) as p t ~~~. Instead, we turn to the basic sequence •~~~~~

discussed in the Appendix. There, we prove that there is an Mij ) 0 such that

(4 9) VG(cp,h) � (M~j In (p + a) h)P ,
- 

provided I-i ~ h~, where h~ — 0((ln p)~
1) as p t ~~~. Furthermore, there are a large

-j number of extra zeros in the matrix A for Pp cRs~ 
Using the notation of the

Appendix, we see that the number of non-zero entries In A is

- . +

. p3/3 - p2/2 + 7p/S

s p3/3+2p2/3

t for p 7 ‘‘. Finally, note that the number of stages s(p) required for ~ cRK
- 

- (4.10) s(p) — [(p2 - 2p + 4)/2j � p~/2 + p

-: for p ( 7 “, which shows that the number of stages required for a pth_order method

in 
~CRK asymptotically equals the number requires for a ptl~_order method in 

~CVRtc•

Thus (considering the combinatory costs), the class •CVRK actually costs more per

step than does 
~~~ 

ignoring the combinatory costs would have caused us to reach

the opposite conclusion.

First, we look at the cost per step. By (4.10),we see that

- 
(4.11) e(~~ (v)) � (p2 + p) N eu(v) ,

where

e1j(v) : max 1~i�N e(v1)

Since we are using •CRK’ it Is easy to see that there is a b~ � 2/3 such that

(4.12) d(p) ~ (p3/3 + b~ 
p2). 2N .

5- —---5- ~~~~ - -——-~ -5-— -————--5—~ --5— - - - --5--—
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CombIning (4.11) and (4.12), we See that the tota l combinatory cost per step is

bounded by

(4.13) c1jp) — N 
~ 

2p3/3 • 01 p2 
~ 0~ P].

where

~1 :— e1Jv) I 2 + 2 b~ 
and 0z 

:— e1j(v) / 2

UsIng (4.9) and (4.13) gives

Theorem ja:
C1j(p,~) — Mij N (2p3/3 + 

~i 
p2 + 02 p 3 In (p + a) .1P .

- ~
- 

Now we look at the opt imality theory for the upper bound.

Theorem j4~:

(1.) For all a > 0, there exists Pu*(hI) such that (2.19) holds.

- 

(2.) 
~~~ 

increases monotonically with a, and

~ a/3 as a t CO

- 

1 (3.) C~f(.) increases monotonically with a, and

Cu5(a) 
~~
‘ (2 M u Ne3 /81].3 ln. •si tCO.

(4.) h~j
5(s) (Mu e~ in a 11 as a t 00 .

Proof: We write

Mu In (p + e) cIJ(p)

in the form

— 1i~P~ 
f2(p) ~

where

f j (p) Mu N p In (p + e) and f2(p) • 2p2/3 + 01 p + 0~
It Is clear that f 1 satisfies the hypotheses of Lemma 2.1. Now we consider f2. Clearly

f2 has no posItive zeros; it may be seen that the condition b~ ~ 2/3 implIes that f2 has

~a —  - .  ~~~~~~ 
—
~~ 

“-C. &.~~~~~ —



- -~~~~~ --~5--,--~~~~~~~~ -~ 5-—--- -- —~..-- -—_- “5-- - - - -5-—  -5-----—. —5--— 5-5-_~~~— -.-- ~~~~~~~

— —— —5-- -- -- - --5

21

a positive discriminant and hence has no complex r ots. Thus f2 has only negative

roots; on. may then show that this guarantees that f2 satisfies the hypotheses of
— Lemma 2.1. Thus, the same may be said for f — f 1 f2 .

Thus PIJ and C
~’ 

behave as described In (1.) of Theorem 2.3. We also see that

GiJp) ~~‘ 3 p as p t CO. Thus the estimate in (2.) holds, from which we get the estimates

in (3.) and (4.). I
- So in the class of linear Runge-Kutta methods, we find that

- - 
(4.14) C1(a) — O(.2) S C’(a) S Cij’(i) — 0(.~ In a)

as a tends to infinity; hence, the ratio

Cu’(a) / C1(a) - 0(a In a)

indicates the gap in our knowledge of the complexity of linear Runge-Kutta methods.

I
—1

4 .  .

-5

— 
- 

-~~~~~~~~~~~~~
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~~~~~~~~~
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5. Comparison of the Methods

We now wish to compare the classes of Taylor series methods and IRK methods.

Write CWr’ . CLI’ , and C1’ (respectively, CU,LRK’ CU~I’ and Ci,j~’) for

C1~, and C’ In the class •~ (respectively, the class •LRK). Since we have only

asymptotic expressions for these quantities, we are forced to use an asym ptotic

comparison. 1 f f , g : -
~ ft4 4  satisfy urn alCO 1(a) — lim atco g(a) — +00, we will

write

(5.1) 1 < g ill 1(a) — o(g(a)) as a t 00;

we say that I is asymototicallv j~g~ ~~~ g. 1ff < g, there is en a0. > 0 such that

f(a) < g(a) for a ‘ a0, so there is a non-asymptotic interpretation of the order

- 
— relation <. Thus if f and g are cost functions, the statement “I < g” implies that the

method whose cost is given by f is “better” (i.e., cheaper) than the method whose cost

is given by g, for s sufficiently small. Using the results of (3.20) and (4.14), we then

have the following

Theorem ~ j: Suppose that (3.16) holds.

(1) If N — 1, then C~,i’ <

(2.) If N — 2, then CUT’ < C,J,~~K’ 
.

(3.) I f N — 3 ,then

C~j~1
5(~) 0(Cu,LRK’(&)-

and - 
-;

- 

- 
C~j,~p1~’(a) — O(Cu,i’(a))

asa lo D.

(4.) If N� 4,then c~n~K’<cI.,1.’ . I 

- - - 5  -~~~~~~~ ----5 - 5-~~~~~- - --~~~-- -- ~~~~~~~~~~~~~~~ - - - -  _ _
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If (3.16) does ~~ hold, then (1.), (2.), and (3.) may be false, but (4.) wIll certainly

be true. As an immediate corollary to the above theorem, we have

Theorem ~~:

(1.) If N — 1 and (3.16) holds, then C1’ < CLRK’

(2.) If N � 4, then CLRK’ < C1~ . I

So if the derivatives of v are cheap to evaluate, we see that the best Taylor

series method known is better than the best linear Runge-Kutta method possibl. for

the scalar case N — 1; but if N ~ 4, the best linear Runge-Kutta method known Is better

than the best Taylor series method possible.

I i .  

- 5- --~~ —--. — -5--— —~~~~ - -—- -5 - -5
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Appendix: Error Bounds for a Sequence of LRK Methods

In this Appendix, we describe a subclass of a class of linear Runge-Kutta (“IRK”)

methods due to Cooper (69]. We shall first prove the following

Theorem ~J.: There is a basic sequence •cRK~ 
of IRK methods such that

(1.) Each Pp ~ •CRK’ requires

- s(p) :— (p2 - p + 2) / 2

evaluations of v per step.

(2.) There exists an M~j > 0 such that

(A.1) 
~G~”p’~ 

� (Mu In (p..) h)P

for h � h~ — 0((ln p)~
1).

We use the notation of Cooper and V~rner (72]. Let p ( 7 
++ be given; define

p:Z ’ fl(0,p] -’ 14 by 
-

- IZL0 k • j (j+1) / 2 if ~ J’ P(A.2) p(j) :— .ç’
Ls i f j — p

where we write “s” for “s(p)” as defined above. Next, a set {
~ , ... , ~

} of Integers is

defined by picking 
~ 

:. p, and setting 
~, 

(I ,‘ 0) to be the unique integer In (1, p3

satisfying

(A.3) 
~(Lj - 1) < I �

We now pick u0 , ... , u5 E I satisfying

(A.4) u0 — 0 , u5 — 1 , u,~~0if i~~0

and

(A .5) (
~ — and i ,‘ j) implies Ui i’ Uj .

- Finally, we pick a matrix of coefficients A :— ()~: 0 S j s i—I, 1 s S s) such that

(A.6) — 0 if 4~ 
- 1 (1 ~ I. I ~ s)

_ _ __ _ _ _ _— -.a.~~ __ . .  ~~~~~~~~~~~~~~~~~~~~~~~~ -~- -‘5- r ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —.——- . . .  - — .
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- } 
- and

(A.7) Z~~ ~j u~’ — (~+1)1uj’~ (0 s s s - 1, 1 S I S a)

Cooper and Verner (72] point out that these conditions may always be fulfilled; the

resulting A defines ~ p
th..order LRK method with s stages.

We are interested In a choice of U0 , ... , u8 which will giv, a small error

coefficient. To this end, we will choose

(A.8) {uj : •~ _ 1 )  — ( ( l+x kfl) / 2 :  ls k S n }  ( l s n s p — 1 ) ,

where x~~ are the zeros of the Jacobi polynomial 
~n :— p~(l.’) (~~

Szeg6 (59]). Since ~hese zeros are distinct and lie in (-1, 1] , conditions (A.4) and (A.5)

may be satisfied.

Now we are able to exhibit a solution to the ~th system in (A.7). First, note that

the equation for r — 0 may be separated from the others, since ti0 • 0. Setting

fl :— — 1 ,

we see that

(A.9) 
~iO 

— tii _ ç ’1Aij — u, - Z ( X ,~: j < i  and £j~~n )

the last by (A.6). We wish to determine the nonzero 
~~ 

i.e., those for which ~ ~
and j < I. So setting

— 0 unless I ( ~ 
... ~

we see that the remaining ~~ are the solution of the system

Z~_ l UJ~~ “Jk — (r-’IY 1 u~” 
(1 ~ ~ ~

)

Ib~ 1b~ ~ri th~ wei&hts ~~ ~ 
interoolatory auadrature formula 9~ (0, U1) with

abscissae , ... , u .  From the usual expression for such weights and (A.6), we see

that

~“iii — 11kn :— (2P~’(cos kn~
]1 S i ,n+1 tP~(cos #) / (cos 0 - ~~ ~~~~~~~ sin O dO ~

where xkn — cos 0kn (1 s K S n).

—

~~~~~

-------  — -—-5— - ----.---

~ 

- - -
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Lemma ~,j: ~lkn 
— O(n~ In n) as n t 00.

Proot: Since the zeros of P,~ are symmetric about the origin, we may assume

that 0 C S ,/2. Using (8.9.2) of Szeg6 (59], we then find

— O(k5/2n 3) 1i,n+1 (P~(cos 0)! (cos O - cos kn~
] sin O dO

-

- 
~~~ 1.: •1,n+1 ~ i,n+1 ~ k,n.1’2’ IN. consider the integral over

(1n 12’ 01,n+1) , since Theorem 15.4 of Szeg5 (59] proves that

O(k512n 3) (I ,f~ I 
+ I S ”~

’2 
I] — 0(~~l)

(Here the integrand Is the same as in the preceding integral.) But the proof of (15.4.12)

in Szeg6 (59] extends almost immediately to a proof that the remaining Integral is

O(k 2n), since (15.4.12) is proved by order-of-magnitude estimates. Thus ai~ 
—

O(n~~) — 0(n~ In n) for Case 1.

Q~~ a: k,n-’1’2 ~ i,n+1 ~ 30k,n+1’2~ 
We consider the integral over

(0kn’2’ 1,n+1) , since Szeg~ (59) shows that
• 0(K5/2n 3) S’ I — 0(n 1)

As in (15.4.13) of Szeg5 (59). we have

— O(nk 3/2) 
~1 +

Here

- I~ :— ~~~ 
D(d) sin d dO ,

with

D(O) :— (cos (NO + ‘y) - COS (NIkn + j43 / (cos O - cos 
kn]’

where N :— n -‘ 3/2 and ‘p :— -3w/4, and

12 : Rfl(#,Okfl) sin O dO 0(nk412),

- 

- 

with R~ the remainder term in (8.8.2) of Szeg6 [59). Unfortunately, the proof that

(15.4.14) of Szegb (59] is bounded does ~~ extend to a proof that I~ 
is bounded,

- ---~~~~~~~~~~~ s - Arn aa -: —-~~~~~~~ ---~ - -- --5---- _________________
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— since the proof of the former requires that the interval of Integration be symmetric

about 0kn• However, It is straightforward to verify that

11 — 0(1)5~’4 Isin N#/ O I dO — 0 (ln n)

Thus Mikn — O(n 2k In n) — 0(n 1 In n) for Case 2.
- 

- 
~ 

3 k,n+1 ~ i,n+i s 3,/4. We consider the integral Over

(3 kn12’ i,n#1] , since Szeg6 (59] proves that

00c5/2n 3) I I — 0(n~
1)

But the proof of (15.4.19) in Szeg8 (59] extends to prov, that the remain ing integral Is

O(k~~’2n) (as in Case 1). Thus 
~ikn — O(n~~) — O(n 1 In n) for Case 3.

~~~ ~: 3,/4 S ~ n+1,n+1~ 
We consider the integral over

(3v/4, ~~~~ ~
] - since Szeg6 [59] shows that

O(k5/2n 3) I 
~~~ 

I — 0(n 1)

As in Cases 1 and 3, the proof of the above may be extended to prove a similar bound

on the integral of interest. Thus iij kfl — O(n 1) — 0(n ’ In n) in Case 4, completIng the

proof of the Lemma. •
Thus (A.9) and Lemma A.1 show the existence of a ) )- 0 such that

(A.10) 
~ ~ In (tj + e);

— here ~ is independent of p. Moreover, the result for the case i — s may be sharpened.

We see that )
~ � 0, since the u~ for the •th system in (A.?) are th. abscIssae for

Lobatto quadrature. Thus

(A.1 1) Z
S
~~ lt

~jI — — 1,

the consistency condition in the last equality being a consequence of (A.7) wlth t — 0. j
Proof ~j  Theorem ~J.: As in Cooper and Verner (72], we define

:—
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•~~
— 

~~ 
*(uh) du - Z~~ ~j *(ujh)

for 0 S I S s; nots that 1~ — ‘o — 0. Let z(h) be the computed approximation to x(h),

then

h

~ 

ffx(h) — z(h)fl — II h ’ ~x~h) — x(0)) — ~~~~ k1

(A.12) S II$~II ~ IIZ~~ ~ ~ll

� II$~II . max 
— p—i II’iII

the last by (A.6) and (A.1 1). By the analyt icity of x , there Is an A 1 > 0 such that

:— h ’ fl x(u1h) - $L0 (u1h)’x~’~(0) / ~l II S (A 1 h)~
and

~ij :- (I *(u1h) - Z~~I~~~ (u1h)’ *~‘~0) / c? II S (A 1 h)~
so that the definition of $~ gives

~ + ~~~~~~

(A.13) S (A 1h)~ +Z~~~I)jj I(A 1h)~
s (A2 h)~

for a suitable A2 > 0. Thus (A.12) becomes

(A.14) h 1 ffx(h) - z(hHI s (A2 h)P + max — p-i tI~iII

we now use Lemma 1.1 of Cooper and Verner (72] and (A.6) to find that If L Is a

- ! Lipsch ltz constant for v, then there exists A3 > 0 such that

IIsjII s hi H$~II + hi Z’~~ IItjjI max j II.~II

� (A3 h)~’~ +(A 3 h) In (Ij +e) mix 1 IIsj II~
the last by (A.1O) and (A.13) here, the maximum Is taken over all j -C I such that

~~ 

- 1. A strai ghtforward induction shows that if (1 + In 2) A3 Ii’ 1, then

II.~II 
� (A4 In (~ + e) h)~

’1

for a suitable A4 > 0. CombinIng this with (A.14), we find

(A.15) h 1 IIx(h) - z(h)fl s (A5 In (p+e) h)P ,

5- ~~~ - 5- ~~~~~~~~~~~~~~~ ~~~~~~~~
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the desired bound for the local error for a single unit step.

To extend (A.15) to a global error result, we must look at the Lipschltz constants

for the increment functions. Let I be a bound on IIVvII, and write “V.r,(y~h)” to

indicate gradient with respect to the vector variable y. Now

IIV.~(Y1h)II s Z~1~ max OSiSs-1 IIVk~(y,h)fl

— max O�i~~ 1 IIVk~(y,h)H ,

where we write “k1(y,h)” to indicate the dependence of k1 upon y and h. By the

definition of kj(y,h) we find

VK~(y,h) — Vv(u) (1NxN + h Z~~ )Ijj Vk~(y h)] ,

where u :— y + h ~~~ )Ijj  k~(y.h) and is an NXN identity matrix. TakIng norms In

th. above gives the result

3., s LA+ hL~ (ln (
~+e) max ( 3 1: j < i  and

- 
- where 3i :— if Vk~(y,hfll. Writing Ar, for the Lipscftitz constant for 

~~~ 
it is easy to see

that (A.16) and the above inequality imply

S (hIM1 14T.,
2
i In (p+e-k) ,

which is bounded for all p, provided that h S hr, < (LX In (p+e)r’. Thus (A.1) follows

from this result, (A.15), and Theorem 3.3 of Henrici (62]. I

The value for s(p) indicated in Theorem A.1 may be improved somewhat by

noting that since we are using a Lobatto quadrature, higher order may be expected
-

- 
with fewer steps. indeed, if we use the strategy outlined In the comments following

Theorem 4 of Cooper and Venter (72], we have

Theorem ~~: There exists a basic sequence •~~~~~ 
of IRK methods suc h that

(A l) holds and ~~ 
requires

-
~~ L(p2 -2p + 4) / 2j

evaluat ions of v per step. I

-
~~~~-- i _~~_~~~~~~~ __ ____~~~~~~~~~~~~~~~~~~

_______ 
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